s Atomic Orbitals (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    1637
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    Each n orbital has only one s orbital and therefore two s orbital electrons. Since its angular momentum quantum number(l) is 0, its magnetic quantum number(ml) is also 0. If there is only one electron, the electron can exist in either spin up(ms=1/2) or with spin down(ms=-1/2) configuration; if there are two electrons, they must be one spin up and one spin down.

    Basic Description

    The shape of the s orbital is a sphere; s orbitals are spherically symmetric. The nodes of s orbital is n-1; the angular nodes is l, which is 0 for all s orbitals; the radial nodes is n-l-1, which is n-1 for all s orbitals. Therefore, s orbital only has radial nodes, which are spheres.

    s Atomic Orbitals (1)

    If n increases, s orbitals become larger, extending farther from the nucleus. They contain more nodes. This is similar to a standing wave that has regions of significant amplitude separated by nodes, points with zero amplitude. For a given atom, the s orbitals also become higher in energy as n increases because of their increased distance from the nucleus.

    Advanced Description

    Wavefunction is a mathematical expression that can be used to calculate any property of an atom. In general, wavefunctions depend on both time and position. For atoms, solutions to the Schrödinger equation correspond to arrangements of the electrons, which, if left alone, remain unchanged and are thus only functions of position. S orbitals only have angular wavefunctions, \(Y^{m_J}_J (\theta , \varphi)\) = \(\dfrac {1}{\sqrt {4 \pi}}\), because all s orbitals are l = 0 and therefore ml=0. S orbitals have different radial wavefunctions; for example, for n=1 to n=3, they are R1,0(r) = \(2 \left (\dfrac {Z}{a_0} \right )^{3/2} e^{-\rho}\), R2,0(r) = \( \dfrac {1}{2 \sqrt {2}}\left (\dfrac {Z}{a_0} \right )^{3/2} (2 - \rho) e^{-\rho/2}\), and R3,0(r) = \( \dfrac {1}{81 \sqrt {3}}\left (\dfrac {Z}{a_0} \right )^{3/2} (27 - 18 \rho + 2\rho ^2) e^{-\rho/3}\). Their complete wave functions are \(\psi_{100} = \dfrac {1}{\sqrt {\pi}} \left(\dfrac {Z}{a_0}\right)^{\frac {3}{2}} e^{-\rho}\), \(\psi_{200} = \dfrac {1}{\sqrt {32\pi}} \left(\dfrac {Z}{a_0}\right)^{\frac {3}{2}} (2-\rho)e^{\dfrac {-\rho}{2}}\), and \(\psi_{300} = \dfrac {1}{81\sqrt {3\pi}} \left(\dfrac {Z}{a_0}\right)^{\frac {3}{2}} (27-18\rho +2\rho^2)e^{-\rho/3}\) (\(\rho = \dfrac {Zr}{a_0}\), where \(a_0\) is the Bohr radius and r is the radial variable).

    Wavefunctions for each atom have some properties that are exact, for example each wavefunction describes an electron in quantum state with a specific energy.

    Radial Probability density is the probability density for the electron to be at a point located the distance r from the proton. Radial probability densities for three types of atomic orbitals are plotted below.

    s Atomic Orbitals (2)

    S orbitals' radial probability densities at 0 are completely different from p orbitas'.

    Radial Probability distribution is the probability density for an electron to be found anywhere on the surface of a sphere located a distance \(r\) from the proton. The area of a spherical surface is \(4 \pi r^2\) (The graph is showed at basic description part).

    s Atomic Orbitals (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Duncan Muller

    Last Updated:

    Views: 5820

    Rating: 4.9 / 5 (79 voted)

    Reviews: 94% of readers found this page helpful

    Author information

    Name: Duncan Muller

    Birthday: 1997-01-13

    Address: Apt. 505 914 Phillip Crossroad, O'Konborough, NV 62411

    Phone: +8555305800947

    Job: Construction Agent

    Hobby: Shopping, Table tennis, Snowboarding, Rafting, Motor sports, Homebrewing, Taxidermy

    Introduction: My name is Duncan Muller, I am a enchanting, good, gentle, modern, tasty, nice, elegant person who loves writing and wants to share my knowledge and understanding with you.